Monday, November 4, 2019

Jenis - Jenis Pengaman Rangkaian Kelistrikan Kendaraan

Jenis - Jenis Pengaman Rangkaian Kelistrikan Kendaraan - Listrik mengalir dalam suatu rangkaian dengan besar arus tertentu sesuai dengan besarnya tahanan pada rangkaian tersebut. Penghantar atau kabel dalam suatu rangkaian listrik mempunyai kemampuan tertentu dalam mengalirkan arus listrik. Apabila besarnya arus yang mengalir melebihi kemampuan kabel, maka kabel akan terbakar akibat energi listrik berlebihan yang menyebabkan terjadinya panas.

Kelebihan arus dalam suatu rangkaian dapat disebabkan oleh hubungan singkat, kelebihan beban, dan lain-lain. Untuk mencegah terjadinya kerusakan pada rangkaian akibat kelebihan arus, maka pada rangkaian kelistrikan dilengkapi dengan pengaman rangkaian.

Pengaman rangkaian digunakan untuk mencegah kabel-kabel, soket-soket, dan jaringan kelistrikan lainnya dari kerusakan akibat kelebihan arus yang mengalir pada rangkaian yang disebabkan oleh hubungan singkat dan kelebihan beban. Kelebihan arus yang menyebabkan terjadinya panas dapat menyebabkan kabel putus dan yang lebih berbahaya lagi dapat menyebabkan kebakaran. 

Pengaman rangkaian sangat sensitif terhadap arus (bukan tegangan) dan ditunjukkan dengan kapasitas atau kemampuannya membatasi arus. Komponen pengaman biasanya dipasang dekat dengan sumber arus pada rangkaian yang diamankannya sehingga saat terjadi gangguan pada rangkaian, bagian ini adalah bagian yang pertama kali diperiksa. 

Berikut Ini Jenis - Jenis Pengaman Rangkaian Kelistrikan Pada Kendaraan


1. Sekering (Fuse)

Sekering adalah komponen pengaman yang banyak digunakan sebagai pencegah kerusakan rangkaian akibat kelebihan arus. Sekering mempunyai bagian yang mudah meleleh akibat aliran arus yang dilindungi oleh badan sekering yang biasanya terbuat dari tabung kaca atau plastik.

Hampir semua rangkaian selain rangkaian lampu kepala, sistem starter, dan sistem pengapian mendapatkan arus melalui kotak sekering.

Tegangan baterai diberikan melalui bagian batang penghantar utama. Salah satu ujung sekering dihubungkan dengan bagian tersebut dan satu ujung lainnya dihubungkan dengan rangkaian yang diamankannya.

Kapasitas sekering yang ada adalah 0,5 sampai 35 amper dan yang paling banyak digunakan adalah 7,5 sampai 20 amper. Sekering yang dipasangkan pada rangkaian akan putus jika dialiri arus yang melebihi kapasitasnya.

Bagian logam yang meleleh dan putus pada sekering akan menyebabkan terjadinya rangkaian terbuka sehingga arus tidak lagi mengalir pada rangkaian tersebut dan rangkaian tidak dapat bekerja.

Untuk mengaktifkan rangkaian tersebut, sekering yang putus harus diganti dengan yang baru. Ukuran elemen logam yang dapat meleleh menentukan kapasitas sekering.
Rangkaian tidak bekerja jika sekering putus

Sekering dipasang pada kontak sekering dan biasanya digabungkan dengan komponen-komponen pengaman lainnya dan relai-relai. Pemasangkan kotak
sekering ini biasanya di bawah dashboard, di ruang dekat mesin, di sebelah kiri panel kaki penumpang atau sebelah kanan panel kaki pengemudi.

Kotak sekering selalu dilengkapi dengan tutup kotak sekering sebagai pelindung sekering dan komponen Sistem Kelistrikan dan Elektronika pada Kendaraan lain yang ada di dalamnya. Pada tutup sekering biasanya tertera gambar lokasi dan posisi tiap sekering, relai, dan komponen lainnya yang berada di dalamnya.
Kotak sekering dan tutup

Sekering Yang Dipakai Pada Kendaraan Ada Dua Tipe, Yaitu :

a. Sekering tipe bilah (blade)

Sekering tipe tabung kaca berbentuk silinder yang pada bagian ujungnya terdapat penutup yang terbuat dari logam yang di dalamnya juga terhubung dengan elemen logam pengaman.

Sekering jenis bilah bentuknya pipih dengan dua kaki yang dapat Sistem Kelistrikan dan Elektronika pada Kendaraan diselipkan pada dudukan sekering. Kaki sekering tersebut satu sama lain terhubung melalui elemen logam tipis sebagai elemen pengaman.

Sekering model bilah adalah model sekering yang sekarang banyak digunakan. Sekering model bilah bentuknya kecil tipis dan rumah sekering yang transparan. Kapasitas arus pada sekering model bilah ini ditunjukkan oleh angka yang terdapat pada punggung sekering.
Sekering tipe bilah ukuran besar, standar dan mini

b. Sekering tipe tabung kaca (cartridge)

Kendaraan keluaran lama umumnya tidak menggunakan sekering model bilah, tetapi menggunakan model tabung kaca atau keramik. Sekering model keramik banyak digunakan pada kendaraan eropa keluaran lama. Kapasitas sekering ini ditunjukkan dengan angka yang tertera pada badan sekering.
Sekering tipe tabung kaca

Kerja sekering tipe ini sama dengan tipe bilah. Jika arus yang mengalir melebihi kemampuan sekering tersebut, maka elemen sekeringnya akan meleleh sehingga terjadi rangkaian terbuka dan sistem kelistrikan tersebut tidak bekerja.
Pemasangan sekering pada sumber

2. Sambungan Pengaman (Fusible Link)

Fungsi sambungan pengaman pada prinsipnya sama dengan sekering. Sambungan pengaman akan rusak jika dilewati oleh arus yang lebih besar dari kemampuannya.

Sambungan pengaman (fusible link) bentuknya seperti kabel yang ukurannya pendek yang mempunyai kabel berdiameter lebih kecil dibanding kebel pada rangkaian agar dapat meleleh atau putus pada saat terjadi aliran arus yang berlebihan.

Pembungkus (isolator) sambungan pengaman yang tidak mudah terbakar sehingga jika saat terjadi aliran arus yang berlebihan tetap aman karena tidak menyebabkan sambungan tersebut terbakar. Kapasitas sambungan pengaman biasanya ditunjukkan dengan label yang terpasang pada satu ujung sambungan pengaman.
Sambungan Pengaman (Fusible Link)


3. Elemen Pengaman

Elemen pengaman fungsinya sama dengan sambungan pengaman, dan sekarang ini komponen sambungan pengaman sudah mulai tergeser oleh elemen pengaman sehingga pada kendaraan baru sekarang banyak menggunakan elemen pengaman. 

Kapasitas elemen pengaman ditunjukkan dengan angka yang tertera pada bagian atas elemen pengaman tersebut. Selain itu kapasitas elemen pengaman ini juga ditunjukkan dengan warna rumahnya. 

Elemen pengaman biasanya dipasang berdekatan dengan baterai atau tergabung dengan sekering dan relai pada kotak sekering (fuse box).

Elemen pengaman mempunyai beberapa bagian penting, yaitu bagian terminal, bagian pengaman, bagian kaki, bagian rumah pengaman. Rumah pengaman berfungsi sebagai dudukan dan pelindung semua komponen elemen pengaman yang ada di dalamnya. Bagian pengaman adalah bagian penting yang dapat memutus rangkaian kelistrikan jika terjadi kelebihan arus.

Bagian terminal adalah bagian yang berfungsi untuk meneruskan arus dari sumber ke bagian pengaman dan diteruskan ke rangkaian melalui kaki lainnya. Pemasangan elemen pengaman sama dengan pemasangan sekering tipe bilah yaitu dengan memasukan elemen pengaman pada dudukannya.


Element pengaman dan bagian-bagiannya

4. Pemutus Rangkaian (Circuit Breaker)

Aliran arus yang besar dan terlalu lama akan menyebabkan kabel atau penghantar pada suatu rangkaian menjadi panas dan kemungkinan terjadi kabel terbakar sangat besar. Salah satu pengaman rangkaian yang banyak digunakan pada rangkaian yang rumit, misalnya power window, sunroof, dan rangkaian pemanas, adalah pemutus rangkaian (circuit breaker).

Beberapa tipe pemutus rangkaian yang umum dijumpai adalah tipe mekanik (tipe reset manual), tipe reset otomatis mekanik, dan tipe reset otomatis polimer (PTC, positive temperature coeficient). Pemasangan pemutus rangkaian biasanya di kotak sekering, tetapi ada juga yang di luar kotak sekering seperti pada power window yang terpasang pada sistem tersebut.
Pemutus rangkaian

5. Pemutus Rangkaian Tipe Manual

Konstruksi dasar dari pemutus rangkaian terdiri dari plat bimetal yang dihubungkan dengan dua terminal dan ke kontak yang ada pada kedua sisinya. Komponen ini dipasang secara seri dengan rangkaian yang diamankannya.
Pemutus rangkaian tipe manual

Saat arus yang mengalir melaluinya mendekati nilai kapasitasnya, maka bimetal akan melengkung karena panas yang ditimbulkan oleh aliran arus tersebut. Hal ini akan menyebabkan kontak bimetal terpengaruh sehingga kontak menjadi terbuka sehingga arus tidak lagi mengalir ke rangkaian sistem kelistrikan.

Jika hal ini terjadi, maka pemutus rangkaian ini harus direset (diset ulang) secara manual dengan menggunakan kawat kecil yang kaku untuk menekan bimetal sehingga kembali ke posisi melengkung dan kontaknya berhubungan kembali. Pemutus rangkaian tipe ini disebut dengan pemutus arus tidak bersiklus.


Kerja pemutus rangkaian

6. Pemutus Rangkaian Tipe Otomatis

Pemutus rangkaian tipe ini dapat memutus arus dan secara otomatis mereset kembali tanpa harus dilakukan pengesetan secara manual. Pemutus rangkaian tipe ini disebut dengan pemutus rangkaian bersiklus (cycling circuit breaker).

Tipe ini biasanya dipakai untuk mengamankan rangkaian berarus besar seperti power door lock, power window, AC, dan lain-lain. Konstruksi pemutus rangkaian tipe ini seperti ditunjukkan pada gambar di bawah terdiri dari bimetal yang terbuat dari logam berkespansi (muai) rendah dan logam berekspansi tinggi, terminal, dan rumah.

Bimetal akan membengkok ke atas apabila dialiri arus yang berlebihan (yang menyebabkan temperatur bimetal naik) sehingga kontak terlepas. Kontak akan terhubung kembali jika bimetal suhunya kembali dingin.
Komtruksi Pemutus Rangakain Tipe Otomatis

7. Pemutus Rangkaian Otomatis / Positif Temperature Coeficient (PTC)

Komponen ini merupakan resistor yang peka terhadap suhu. Jika suhu yang mengenai komponen ini naik, maka tahanannya akan makin besar sehingga arus yang mengalir turun. Jadi pengamanan rangkaian dilakukan dengan menurunkan arus yang mengalir ke rangkaian pada saat terjadi aliran arus yang berlebihan dan menyebabkan temperatur naik.

Komponen ini terbuat dari polimer konduktif yang biasa disebut dengan termistor. Komponen pengaman tipe ini tidak mempunyai bagian yang bergerak seperti pada pemutus rangkaian tipe mekanik. PTC umumnya digunakan untuk melindungi sistem power window, dan rangkaian power lock (central lock).

Pada keadaan normal, bahan polimer di dalam PTC berada dalam bentuk kristal padat, dengan banyak partikel-partikel karbon yang berkumpul menjadi satu. Partikel-partikel karbon ini memberikan jalan bagi arus listrik sehingga dapat mengalir.

Pada kondisi ini tahanan PTC rendah sehingga arus besar dapat mengalir. Apabila arus yang terlalu besar mengalir, maka arus tersebut akan menyebabkan naiknya suhu sehingga polimer di dalam PTC berekspansi dan rantai karbon tertarik sehingga saling berjauhan.

Dalam kondisi ini, tahanan PTC meningkat sehingga arus yang dapat mengalir kecil. Jika arus mengalir melebihi batas kerjanya, komponen ini akan berada dalam kondisi terbuka (memutus rangkaian) selama tegangan masih berada pada rangkaian tersebut.
Pemutus rangkaian PTC

Sunday, November 3, 2019

Cara membuka Tata Letak Layar Utama Dikunci di Hp Xiaomi Saat Uninstall Aplikasi

Cara membuka Tata Letak Layar Utama Terkunci Saat Uninstall Aplikasi di Hp Xiaomi - Siapa yang yang tak kenal dengan hp android xiaomi, dimana hampir semua pengguna smartphone tahu dan banyak pengguna yang menggunakan smartphone besutan asal negara china ini. Jika melihat fitur yang dimiliki xiaomi, memang ponsel xiaomi sendiri berani mengeluarkan fitur yang lebih di bandingkan dengan ponsel pesaing lainnya namun dengan harga yang lebih terjangkau.

Dan jika berbicara mengenai aplikasi, xiaomi juga membekali tiap tipe smartphone dengan aplikasi bawaan yang memiliki banyak manfaatnya. Seperti diantaranya aplikasi kamera, remote, barcode dan masih banyak lainnya. Dimana fitur-fitur lebih ini jarang ada pada ponsel lainnya. Dan selain dari aplikasi bawaan tentu kalian juga bisa menambahkan beberapa aplikasi yang menarik yang bisa kalian download atau install melalui playstore.

Dalam hal tertentu maka ada saatnya ketika hp xiaomi mengalami yang namanya memori penuh. Dan jika hal ini terjadi, kita tidak akan nyaman ketika menggunakan hp xiaomi sebelum kita mengosongkan ruang penyimpanan di xiaomi kita. Dan jalan yang dipilih untuk mengatasi memori penuh di xiaomi ini, ada yang menghapus file-file dari pengelola berkas, dan juga menghapus aplikasi yang sudah tak terpakai lagi.

Namun sayangnya, kebiasaan yang biasa terjadi ketika ingin meng uninstall aplikasi pada hp xiaomi, kendala yang sering di hadapi bagi pengguna ponsel xiaomi adalah saat kita mencoba menghapus dengan cara menahan aplikasi pada layar utama saat ingin kita uninstall yaitu aplikasinya tidak bisa kita hapus/uninstall. Dan muncul notif bertuliskan “ Tata Letak Layar Utama DiKunci”.

Cara membuka Tata Letak Layar Utama Dikunci di Hp Xiaomi Saat ingin hapus Aplikasi

Baca Juga :

Hal ini terkadang hal seperti ini sangatlah menjengkelkan karena kita sejatinya ingin menghapus sebuah aplikasi karena ingin melegakan sebuah ruang memory internal namun kenyataannya malah tak bisa di hapus. Nah buat kalian yang merasakan hal seperti ini kalian bisa dengan mudah mengatur tata letak layar utama agar tidak terkunci, sehingga kalian bebas mengganti posisi aplikasi ataupun ingin menghapus aplikasi dengan mudah. Dan berikut adalah langkah-langkah mudah yang bisa kalian coba :

Cara Membuka Tata Letak Layar Utama Dikunci Pada Hp Android Xiaomi :

  • Pertama silahkan kalian masuk ke menu pengaturan/setelan pada smartphone xiaomi kalian.
  • Kemudian kalian tinggal pilih pada menu layar utama & Terkini.
  • Nah setelah ada keterangan Kunci Tata Letak Layar Utama,silahkan kalian matikan dengan OFF  saja.

Cara membuka Tata Letak Layar Utama Dikunci di Hp Xiaomi Saat Uninstall Aplikasi

  • Setelah kalian melakukan pengaturan seperti diatas kini kalian bisa dengan mudah menghapus aplikasi yang kalian inginkan langsung pada layar utama smartphone kalian.
  • Selesai.

Cara membuka Tata Letak Layar Utama Dikunci di Hp Xiaomi Saat Uninstall Aplikasi


Demikianlah tutorial pada kali ini tentang cara membuka layar utama terkunci di xiaomi saat akan menghapus aplikasi terinstall. Semoga artikel ini bisa bermanfaat dan memberikan pengetahuan buat para pembaca, sampai jumpa kembali pada postingan artikel selanjutnya. Terimakasih.

Fungsi Engine Mounting & Tanda Engine Mounting Rusak

Fungsi Engine Mounting & Tanda Engine Mounting Rusak - Engine mounting merupakan salah satu komponen yang terdapat pada mobil, letak engine mounting ini dekat dengan mesin

Fungsi Engine Mounting


Engine mounting adalah komponen yang berfungsi untuk menahan mesin dan meminimalisir gentaran yang dihasilkan oleh mesin. Engine mounting terbuat dari bahan karet (rubber) dan logam.
Engine Mounting

Karet pada engine mounting difungsikan untuk mencegah bagian logam yang terdapat pada mesin dan bodi mobil saling bergesekan. Dengan kata lain, engine mounting berperan untuk meredam getaran, agar efek getaran tidak menelusup ke dalam kabin.

Getaran ini dipicu oleh banyak bagian yang bergerak pada mesin. Hal tersebut karena mesin sebagai pengolah tenaga untuk menggerakan mobil dan menghasilkan getaran yang tinggi.

Pada proses mesin pembakaran dalam campuran antara bahan bakar dan udara akan masuk kedalam ruang bakar, setelah itu busi busi bertugas memercikan bunga api yang mengakibatkan ledakan di dalam ruang bakar.

Dari ledakkan tersebutlah akan memutar cranksaft / kruk as yang berbentuk bandul, sehingga menimbulkan getaran yang cukup kuat. Jika getaran tersebut terhantar ke rangka kendaraan, maka menyebabkan kenyamanan di ruang kabin akan berkurang.

Umumnya engine mounting tipe konvensional memiliki konstruksi berupa pelat baja, dengan satu sisi menjadi pengait dengan sasis.

Pada beberapa model kendaraan dudukan engine (engine mounting) ini juga mengandung cairan yang bertindak sebagai peredam kejut. Dalam model lain, ruang hampa udara dibuat untuk menyerap guncangan.

Lalu Apa Yang Terjadi Jika Engine Mounting Rusak ?

Timbul getaran yang berlebihan pada kendaraan, getaran ini adalah akibat langsung dari dudukan engine yang gagal menyerap getaran yang dihasilkan dari dalam mesin. 

Getaran ini akan lebih terasa ketika mesin idle saat transmisi masih aktif. Bahkan setir pun menjadi bergetar, dan itu tandanya engine mounting sudah bermasalah atau tidak normal lagi.

Paling mudah mengetahuinya saat berada di dalam kabin akan merasakan getaran yang tidak wajar dan terkadang timbul bunyi. 

Kemudi suara yang tidak biasa di mesin, jika engine mounting rusak, mesin tidak akan dipegang dengan kuat di tempatnya dan getaran akan menyebabkan beberapa kebisingan dihasilkan saat mesin bergerak.

Cara untuk memperbaikinya adalah dengan membawa bengkel, namun perlu diperhatikan engine mounting yang dipasang dengan buruk akan mengalami kegagalan atau kerusakan sebelum waktunya. 

Dudukan engine juga dapat gagal berfungsi secara efektif sebagai akibat kebocoran cairan atau bagian yang rusak pada dudukan.

Jika ditemukan karetnya sudah retak, maka itu juga menjadikan getaran terasa ketika mobil melaju. Solusinya harus diganti di bengkel.

    TANPA BONGKAR ! Menghilangkan Titik Hitam Di Layar LED HP Android


    Layar Android Muncul Bercak Hitam - Bagaimana cara mengatasi layar lcd hp android muncul titik hitam ?

    Perlu untuk kalian ketahui bahwa munculnya bercak hitam di touchscreen hp android sering kali terjadi pada layar ponsel dengan tipe LED, misalnya saja seperti amoled, oled dan juga super amoled.

    Namun sebagai pengguna ponsel android, tentu noda hitam yang ada pada lcd hp android pasti akan

    Thursday, October 31, 2019

    Fungsi MAF Sensor (Mass Air Flow) & Cara Kerjanya

    Fungsi MAF Sensor (Mass Air Flow) & Cara Kerjanya - Salah satu sensor penting mesin injeksi adalah sensor pasokan udara. Sensor udara ini memiliki berbagai tipe, ada MAF (Mass Air Flow) sensor, Air Flow Meter, dan Hot Wire. Umumnya sensor ini berada di ruang mesin, sebelum throttle body.


    Fungsi MAF Sensor (Mass Air Flow)  


    Sensor Mass Air Flow ini digunakan pada sistem injeksi elektronik untuk mendeteksi atau mengukur jumlah udara yang mengalir melalui  katup gas (throttle valve) pada throttle body berdasarkan kevakuman yang terjadi di dalam intake manifold.
    Sensor MAF (Mass Air Flow)

    Di dalam MAF sensor biasanya juga terdapat IAT (Intake Air Temperature) sensor yang berfungsi untuk mendeteksi suhu udara yang masuk ke saluran intake manifold. Jumlah aliran udara yang masuk diubah menjadi output signal dari sensor menuju ECU. 

    Selanjutnya informasi yang diterima  ECU diolah, lalu ECU akan memberi perintah ke injektor untuk menginjeksikan jumlah rasio bahan bakar dan udara yang optimal sesuai dengan kebutuhan mesin berdasarkan RPM dan beban mesin.

    MAF sensor dapat ditemukan pada mesin bensin maupun mesin diesel. Pada mesin bensin sensor MAF (Mass Air Flow) ini dapat ditemukan pada  mesin yang mengggunakan sistem injeksi tipe L-EFI.  

    Sementara pada mesin diesel bisa ditemukan pada mesin diesel yang telah menggunakan sistem Common Rail seperti pada mobil Toyota Fortuner, Ford Ranger dan lain-lain. Fungsi sensor Mass Air Flow (MAF) ini adalah untuk mengukur volume udara dan menyalurkan  udara  ke mesin mobil.

    Seperti contoh, pada putaran mesin sekitar 1673 rpm banyaknya udara yang masuk ke mesin sekitar 23,88 galon/detik. ECU atau Electronic Control Unit menggunakan informasi banyaknya udara yang melewati MAF sensor untuk menentukan waktu injeksi bahan bakar dan untuk menyediakan perbandingan udara-bahan bakar yang tepat.

    Pada mobil yang menggunakan sistem bahan bakar injeksi umumnya MAF sensor terletak dirumah filter udara atau setelah filter udara.
    Posisi Letak Sensor MAF (Mass Air Flow)


    Cara Kerja Sensor MAF (Mass Air Flow)


    Pada bagian dalam Sensor MAF (Mass Air Flow) terdapat kabel pemanas platinum yang terkena aliran udara pada intake setelah filter udara. Dengan memberikan arus listrik dalam jumlah tertentu ke kabel elemen, ECU memanaskan elemen itu hingga pada temperatur tertentu. 

    Aliran udara yang masuk melewati element dan mendinginkan elemen dan internal thermistor untuk mempengaruhi nilai tahanan keduanya. Untuk menjaga nilai arus yang konstan, ECU mengubah voltase yang dipakai komponen ini dalam Mass Air Flow meter. 

    Ukuran tegangannya sama dengan volume aliran udara yang melewati sensor, dan ECU menggunakan informasi tersebut untuk menghitung volume udara yang masuk melewati intake.

      Fungsi MAP Sensor (Manifold Absolute Pressure) & Cara Kerjanya

      Fungsi MAP Sensor (Manifold Absolute Pressure) & Cara KerjanyaMAP sensor umumnya dipasang langsung pada bagian intake manifold mesin. Tetapi pada beberapa mesin EFI sensor MAP dipasang terpisah dari intake manifold, letaknya menempel pada rumah filter udara tetapi tetap terhubung dengan intake manifold melalui selang karet.

      Fungsi MAP Sensor (Manifold Absolute Pressure) 


      MAP sensor berfungsi untuk memberikan informasi data tekanan udara di dalam intake manifold secara aktual berupa perubahan tegangan ke dalam Electronic Control Unit (ECU). 

      MAP sensor mendeteksi atau mengukur jumlah udara yang mengalir melalui  katup gas (throttle valve) pada throttle body berdasarkan kevakuman yang terjadi di dalam intake manifold.
      Letak MAP Sensor Pada Daihatsu Xenia

      MAP (Manifold Absolute Pressure) digunakan pada mesin yang menggunakan sistem injeksi tipe D-EFI. Sedangkan sensor MAF (Mass Air Flow dapat ditemukan pada  mesin yang mengggunakan sistem injeksi tipe L-EFI.

      MAP (Manifold Absolute Pressure) ini berbeda dengan sensor MAF (Mass Air Flow). Tetapi fungsi kedua sensor ini hampir sama yaitu untuk mendeteksi banyaknya udara yang masuk. Volume udara masuk ini diukur agar campuran antara udara dan bahan bakar dapat ideal.

      Cara Kerja MAP Sensor

      MAP sensor ini bertugas mengukur tekanan udara didalam intake manifold melalui selang vakum yang terhubung antara sensor MAP dengan intake manifold. 

      Kevakuman didalam intake manifold terjadi ketika mesin mulai dinyalakan dan nilai kevakuman akan berubah ketika pedal gas diinjak (tergantung bukaan throttle valve).

      Di dalam sensor MAP terdapat komponen silicon chip yang berfungsi merubah tahanan sesuai dengan tekanan udara dari intake manifold. Satu sisi silicon chip terhubung dengan tekanan udara intake manifold dan satu sisi lainnya terhubung dengan ruang vakum (vacuum chamber). Untuk lebih jelasnya perhatikan gambar di bawah ini :
      Kontruksi Sensor MAP

      Tekanan pada ruang vakum akan tetap konstan sedangkan pada ruang intake manifold tekanan akan mengalami perubahan. Perubahan tekanan pada intake manifold akan menyebabkan perubahan bentuk dari silicon chip. 

      Nilai tahanan pada silicon chip juga akan berubah sesuai dengan tingkat perubahan tekanan. Tegangan signal dari ECU akan masuk kedalam terminal VC yaitu sebesar 5 volt. Tegangan ini akan mengalir melewati silicon chip. Apabila tahanan pada silicon chip besar maka tegangan yang melewatinya akan semakin kecil.

      Tegangan yang telah melewati silicon chip ini selanjutnya akan dikirimkan ke terminal PIM dan selanjutkan di kirimkan ke ECU.

      Sensor MAP terdiri dari tiga terminal kabel dan satu selang vakum. Selang vakum sensor MAP ini terhubung dengan intake manifold chamber, sedangkan tiga terminal kabel ini yaitu terdiri dari :
      Terminal Pada MAP Sensor

      Keterangan :

      1. Terminal VC : yaitu terminal yang mendapatkan tegangan atau signal inputan dari ECU yaitu sebesar 5 volt ketika kunci kontak di On kan.

      2. Terminal PIM : yaitu terminal yang digunakan sebagai terminal keluaran atau signal output dari sensor MAP. Tegangan ini nilainya akan bervariasi tergantung dari kevakuman manifold dan tegangan keluaran ini nantinya akan dikirimkan kembali ECU sebagai inputan data oleh ECU.

      3. Terminal E2 : yaitu terminal yang digunakan sebagai massa atau ground dari sensor MAP.

      Ketika terjadi masalah pada sensor MAP maka otomatis lampu MIL (Malfunction Indicator Lamp) atau check engine akan menyala. Letak dari lampu check engine atau MIL terletak pada dashboard kendaraan. 

      Pada kondisi normal, lampu check engine akan menyala ketika kunci kontak ON mesin mati, dan normalnya lampu akan mati kembali ketika mesin dinyalakan, Namun apabila lampu check engine ini tetap menyala saat mesin menyala maka menandakan ada masalah pada sensor.

      Untuk memastikan apakah kerusakan yang terjadi disebabkan karena sensor MAP dan bukan oleh sebab lain maka dibutuhkan alat scan atau scan tool.

          Fungsi ISC (Idle Speed Control) & Cara Kerjanya

          Fungsi ISC (Idle Speed Control) & Cara Kerjanya - Idle Speed Control (ISC) berfungsi untuk mengatur volume udara yang masuk ketika putaran mesin idle (langsam) atau ketika putaran mesin tanpa beban. Dengan cara bypass katup gas atau throtle valve dalam kondisi tertutup. ECU hanya mengoperasikan katup ISC untuk membuat idle up dan memberikan umpan balik untuk mencapai target putaran idling.
          Letak ISC (Idle Speed Control) Pada Toyota Rush

          Jika Pada Mobil Sistem Bahan Bakar Konvensional Terdapat 2 Sekrup Penyetel Karburator, yaitu :

          1. Sekrup Idle Speed Air Screw (ISAS)
          Sekrup ini berfungsi untuk mengatur sudut pembukaan katup gas, saat katup gas tidak mendapatkan tekanan

          2. Sekrup Idle Mixture Air Screw (IMAS)
          Sekrup ini berfungsi untuk mengatur udara yang melewati saluran idle pada karburator.

          Maka pada sistem bahan bakar EFI (Electronic Fuel Injection), kedua sekrup penyetel yang diatur secara manual tersebut digantikan dengan komponen ISC (Idle Speed Control). Dengan menggunakan ISC maka tidak perlu lagi mengatur putaran idle pada mesin EFI.

          Fungsi Idle Speed Control (ISC)


          1. Menaikan putaran mesin ketika mesin dingin atau saat mesin pertama kali dinyalakan pagi hari. Saat pagi hari mesin dalam keadaan dingin, idle speed control (ISC) akan menaikan RPM mesin menjadi 2000, setelah itu katup ISC akan membuka lebih besar sesuai perintah yang diberikan oleh ECU.

          2. Mengatur jumlah udara yang masuk ke intake manifold saat pedal gas tidak diinjak (throttle valve tertutup).

          3. Menyesuaikan putaran langsam (idle) mesin pada segala kondisi secara otomatis.

          4. Menaikan putaran mesin saat beban elektrikal bertambah, contohnya saat nyala lampu besar atau pemanas kaca belakang.

          5. Idle up mesin, idle up difungsikan untuk menjaga agar putaran mesin tetap stabil, walaupun saat AC mobil mulai dinyalakan. Jika idle up tidak bekerja, mesin akan bergetar karena beban mesin bertambah untuk memutar kompressor AC.

          Kerja ISC Dipengaruhi Beberapa Komponen Lain, Apa Saja?

          1. Sensor MAF (Mass Air Flow)
          MAF mengirimkan data masa / volume udara berdasarkan aliran.

          2. Sensor CKP (Crankshaft Position Sensor)
          Berfungsi untuk mengukur RPM mesin sebagai feedback atas kinerja ISC system.

          3. Sensor TPS (Throttle Postion Sensor) 
          Mengetahui posisi katup gas untuk menentukan sudut pembukaan katup.

          4. Sensor Barometric Pressure
          Mengetahui tekanan udara pada suhu dan ketinggian mobil berada.

          5. Sensor ECT (Engine Coolant Temperature)
          Berfungsi untuk memonitor suhu air pendingin mesin untuk mengetahui suhu mesin.

          Baca Juga : Jenis - Jenis ISC (Idle Speed Control)

          6. Sensor AC Refrigerant Pressure
          Berfungsi untuk mengukur tekanan freon AC agar mesin dapa hidup walau dibebani kompresor AC ketika AC dinyalakan.

          7. Electronic Control Unit (ECU)
          Berfungsi sebagai kontroller yang akan melakukan perhitungan dari berbagai data sensor.

          8. ISC Valve
          Berfungsi sebagai aktuator yang akan menutup dan membuka saluran idle berdasarkan perhitungan dari ECU.


          Cara Kerja Idle Speed Control (ISC)

          Wiring Diagram ISC Valve (Idle Speed Control)

          Keterangan :

          ECU mengirimkan perintah berupa tegangan dengan nilai tertentu. Besar nilai tegangan ini akan mempengaruhi besar kecilnya katup ISC membuka. Besaran tegangan ini, diperoleh dari serangkaian perhitungan didalam ECU dari berbagai data masukan yang diperoleh dari sensor. 

          Saat mesin hidup, sensor TPS akan mengirimkan sinyal yang menunjukan katup dalam posisi tertutup. Sinyal yang dikirimkan, berupa tegangan dengan besaran antara 0 volt - 5 volt. Pada posisi katup tertutup rapat, maka tegangan yang dikirimkan sensor menyentuh 4,9 Volt. 

          Saat katup terbuka maka tegangan sinyal akan semakin turun. Jika tegangan sinyal TPS berada pada 4,8 - 4,9 Volt maka ECU akan menyimpulkan katup gas dalam posisi tertutup atau mesin berada pada kecepatan idle. Maka tegangan ke ISC valve siap dikirimkan. 

          Tetapi, ECU perlu data dari sensor lain untuk mengetahui berapa besaran tegangan ISC yang tepat sesuai kondisi mesin. Maka sensor MAP akan mengirimkan tegangan sinyal yang menunjukan beban mesin. 

          ECT (Engine Control Temperature) akan mengirimkan tegangan sinyal yang menunjukan suhu mesin, dan Refrigerant pressure sensor akan mengukur tekanan freon untuk mengetahui beban mesin terhadap kompresor. 

          Untuk pengolahan atau kalkulasi didalam ECU, tidak kita ketahui secara pasti karena didalam ECU tegangan sensor tersebut akan diolah oleh serangkaian IC yang terintegrasi satu sama lain. 

          Jadi, ECU berisi beberapa transistor dan IC. Sehingga kita akan terlalu rumit untuk membahas hingga kedalam IC tersebut. Intinya, ECU akan menkalkulasi data dari sensor tersebut dan hasilnya berupa output tegangan dengan value tertentu. 

          Dalam sistem ini ada dua aktuator yang berperan, yakni injektor untuk menyuplai bensin dengan volume yang pas dan ISC valve untuk mengatur udara dengan volume yang pas. 

          ISC valve mengubah tegangan listrik yang diperoleh dari ECU ke gerakan mekanis. Gerakan ini akan dihubungkan pada sebuah katup yang bisa mengatur besar kecilnya saluran idle.